Abstract
In the current paper we present a powerful technique of obtaining natural deduction proof systems for first-order fixpoint logics. The term fixpoint logics refers collectively to a class of logics consisting of modal logics with modalities definable at meta-level by fixpoint equations on formulas. The class was found very interesting as it contains most logics of programs with e.g. dynamic logic, temporal logic and the μ-calculus among them. In this paper we present a technique that allows us to derive automatically natural deduction systems for modal logics from fixpoint equations defining the modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.