Abstract

When an organometallic catalyst is tethered onto a nanoparticle and is embedded in a monolayer of longer ligands terminated in "gating" end-groups, these groups can control the access and orientation of the incoming substrates. In this way, a nonspecific catalyst can become enzyme-like: it can select only certain substrates from substrate mixtures and, quite remarkably, can also preorganize these substrates such that only some of their otherwise equivalent sites react. For a simple, copper-based click reaction catalyst and for gating ligands terminated in charged groups, both substrate- and site-selectivities are on the order of 100, which is all the more notable given the relative simplicity of the on-particle monolayers compared to the intricacy of enzymes' active sites. The strategy of self-assembling macromolecular, on-nanoparticle environments to enhance selectivities of "ordinary" catalysts presented here is extendable to other types of catalysts and gating based on electrostatics, hydrophobicity, and chirality, or the combinations of these effects. Rational design of such systems should be guided by theoretical models we also describe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.