Abstract
This paper focuses on generalizing quantiles from the ordering point of view. We propose the concept of partial quantiles, which are based on a given partial order. We establish that partial quantiles are equivariant under order-preserving transformations of the data, robust to outliers, characterize the probability distribution if the partial order is sufficiently rich, generalize the concept of efficient frontier, and can measure dispersion from the partial order perspective. We also study several statistical aspects of partial quantiles. We provide estimators, associated rates of convergence, and asymptotic distributions that hold uniformly over a continuum of quantile indices. Furthermore, we provide procedures that can restore monotonicity properties that might have been disturbed by estimation error, establish computational complexity bounds, and point out a concentration of measure phenomenon (the latter under independence and the componentwise natural order). Finally, we illustrate the concepts by discussing several theoretical examples and simulations. Empirical applications to compare intake nutrients within diets, to evaluate the performance of investment funds, and to study the impact of policies on tobacco awareness are also presented to illustrate the concepts and their use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.