Abstract
Many time series encountered in real applications display seasonal behavior. In this paper, we consider multiplicative seasonal vectorial autoregressive moving average (SVARMA) models to describe seasonal vector time series. We discuss conditional maximum likelihood estimation of the model parameters, allowing them to satisfy general linear constraints. Having fitted a model, residual autocovariances (or autocorrelations) have been found useful in checking time series models. Consequently, we obtain the asymptotic distributions of the residual autocovariance matrices. As applications of these results, Portmanteau test statistics are proposed and their asymptotic distributions are studied. The finite-sample properties of the test statistics are evaluated using Monte Carlo experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.