Abstract
In this article, the generalized unified method (GUM) is used for finding multiwave solutions of the coupled Whitham‐Broer‐Kaup (WBK) equation with variable coefficients. Which describes the propagation of of shallow water waves. Here, we study the effects of the indirect nonlinear interaction of one‐, two‐ and three‐solitonic similaritons on the behavior of propagation of waves, in quasi‐periodic distributed system. This study can unable us to control the dynamics of type soliton (soliton, anti‐soliton) similaritons waves in dispersive waveguides. To give more physical insight to the obtained solutions, they are shown graphically. Their different structures are depicted by taking appropriate arbitrary functions. Further, with the suitable parameters, the indirect nonlinear interaction between two and three‐soliton waves are shown weal, in the sense that their amplitude does not blow up. Moreover, because of the importance of conservation laws Cls and stability analysis SA in the investigation of integrability, internal properties, existence, and uniqueness of a differential equation, we compute the Cls via multiplier technique and stability analysis via the concept of linear stability analysis for the WBK equations using the constant coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.