Abstract

Data from repeated measures experiments are usually analyzed with conventional ANOVA. Three well-known problems with ANOVA are the sphericity assumption, the design effect (sampling hierarchy), and the requirement for complete designs and data sets. This tutorial explains and demonstrates multi-level modeling (MLM) as an alternative analysis tool for repeated measures data. MLM allows us to estimate variance and covariance components explicitly. MLM does not require sphericity, it takes the sampling hierarchy into account, and it is capable of analyzing incomplete data. A fictitious data set is analyzed with MLM and ANOVA, and analysis results are compared. Moreover, existing data from a repeated measures design are re-analyzed with MLM, to demonstrate its advantages. Monte Carlo simulations suggest that MLM yields higher power than ANOVA, in particular under realistic circumstances. Although technically complex, MLM is recommended as a useful tool for analyzing repeated measures data from speech research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.