Abstract

In this paper, we focus on the capacity and delay tradeoff for multicast traffic pattern in cognitive radio mobile ad hoc networks (MANETs). In our system model, the primary network consisting of n primary nodes overlaps with the secondary network consisting of m secondary nodes in a unit square. Assume that all nodes move according to an independent and identically distributed mobility model, and each primary node serves as a source that multicasts its packets to kp primary destination nodes, whereas each secondary source node multicasts its packets to ks secondary destination nodes. Under the cell partitioned network model, we study the capacity and delay for the primary networks under two communication schemes, i.e., noncooperative scheme and cooperative scheme. The communication pattern considered for the secondary network is cooperative scheme. Given that m = n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">β</sup> (β > 1), we show that per-node capacities O(1/k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> ) and O(1/k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ) are achievable for the primary network and the secondary network, with average delays Θ(n log k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> ) and Θ(m log k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ), respectively. Moreover, to reduce the average delay in the secondary network, we employ a redundancy scheme and prove that a per-node capacity O(1/k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> √m log k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ) is achievable with average delay Θ(√m log k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ). We find that the fundamental delay-capacity tradeoff in the secondary network is delay/capacity ≥ O(mk <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> log k <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ) under both cooperative and redundancy schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call