Abstract
This paper presents a study of the Multi-Type Reverse Nearest Neighbor (MTRNN) query problem. Traditionally, a reverse nearest neighbor (RNN) query finds all the objects that have the query point as their nearest neighbor. In contrast, an MTRNN query finds all the objects that have the query point in their multi-type nearest neighbors. Existing RNN queries find an influence set by considering only one feature type. However, the influence from multiple feature types is often critical for strategic decision making in many business scenarios, such as site selection for a new shopping center. To that end, we first formalize the notion of the MTRNN query by considering the influence of multiple feature types. We also propose R-tree based algorithms to find the influence set for a given query point and multiple feature types. Finally, experimental results are provided to show the strength of the proposed algorithms as well as design decisions related to performance tuning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.