Abstract

We consider the problem of delay estimation by the observations of the solutions of several SDEs. It is known that the MLEs for these models are consistent and asymptotically normal, but the likelihood ratio functions are not differentiable w.r.t. the parameter, and therefore the numerical calculation of the MLEs encounter certain difficulties. We propose One-step and Two-step MLEs, whose calculation has no such problems and provide an estimator asymptotically equivalent to the MLE. These constructions are realized in two or three steps. First, we construct preliminary estimators which are consistent and asymptotically normal, but not asymptotically efficient. Then we use these estimators and a modified Fisher-score device to obtain One-step and Two-step MLEs. We suppose that its numerical realization is much more simple. Stochastic Pantograph equation is introduced and related statistical problems are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.