Abstract
This article deals with the following (N,q)-Laplacian equation with exponential critical growth in RN of the form:−ΔNu−Δqu+(μV(x)+B(x))(|u|N−2u+|u|q−2u)=h(u)inRN, where 2≤N<q, μ∈(0,∞), h is a continuous function with exponential critical growth and V:RN→R is a continuous function verifying some hypotheses. Assuming that the nonnegative function B has a potential well int(B−1({0})) composed of k disjoint components Ω1,Ω2,⋯,Ωk. With the help of the variational methods and Morse iteration technique, the existence and multiplicity of positive multi-bump solutions are obtained if the parameter μ>0 is large enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.