Abstract

On the great success of bond-additive topological indices like Szeged, Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar index, has been introduced recently as a peripherality measure in molecular graphs and networks. For a connected graph G, the Mostar index is defined as $$M_{o}(G)=\displaystyle{\sum\limits_{e=gh\epsilon E(G)}}C(gh),$$ where $C(gh) \,=\,\left|n_{g}(e)-n_{h}(e)\right|$ be the contribution of edge $uv$ and $n_{g}(e)$ denotes the number of vertices of $G$ lying closer to vertex $g$ than to vertex $h$ ($n_{h}(e)$ define similarly). In this paper, we prove a general form of the results obtained by $Do\check{s}li\acute{c}$ et al.\cite{18} for compute the Mostar index to the Cartesian product of two simple connected graph. Using this result, we have derived the Cartesian product of paths, cycles, complete bipartite graphs, complete graphs and to some molecular graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call