Abstract

The design of a mooring system of a Wave Energy Converter is a challenging process that points out several unsolved technical problems, mostly related to the highly non-linear hydrodynamic phenomena occurring when high waves (e.g. 8 m high with 200 m wavelength) propagate in relatively shallow waters (e.g. 20 m). The aim of this note is to point out the relevance of the non-linear response of a WEC anchored in relatively shallow waters (shallow in the "non-linear† sense) in terms of loads applied to the mooring lines. Further, the effects of this cyclic load on the anchors is investigated. Note that to some extent it is like checking the importance of geotechnical and coastal engineers in the design process of the WEC structure and its mooring system (typically carried out by naval architects). The whole mooring design process is first outlined and then it is schematically applied to a specific case, namely a promising Italian device named SeaBreath (www.seabreath.it), in view of a possible deployment in the Adriatic Sea. The main concern of mooring designers is related to resonance effects induced by the second order drift. Therefore specific tests have been carried out in the 36 m long x 1.0 m wide x 1.3 m high wave flume of Padova University. Tests focused on the forces on the mooring lines induced by the sum of two regular waves of similar frequency. The mooring design is still far from complete: the physical model proved the relevance of the aforementioned effects but a numerical investigation (not yet performed) is required to draw final conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call