Abstract

Recently, the first author of this paper, used the structure of finite dimensional translation invariant subspaces of C(R, C) to give a new proof of classical Montel’s theorem, about continuous solutions of Frechet’s functional equation ∆m h f = 0, for real functions (and complex functions) of one real variable. In this paper we use similar ideas to prove a Montel’s type theorem for the case of complex valued functions defined over the discrete group Z d. Furthermore, we also state and demonstrate an improved version of Montel’s Theorem for complex functions of several real variables and complex functions of several complex variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.