Abstract
ABSTRACTA result of Segal states that every complex irreducible representation of a finitely generated nilpotent group G is monomial if and only if G is abelian-by-finite. A conjecture of Parshin, recently proved affirmatively by Beloshapka and Gorchinskii (2016), characterizes the monomial irreducible representations of finitely generated nilpotent groups. This article gives a slightly shorter proof of the conjecture using ideas of Kutzko and Brown. We also give a characterization of the finite-dimensional irreducible representations of two-step nilpotent groups and describe these completely for two-step groups whose center has rank one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.