Abstract

In this paper we introduce the notion of a categorical Mackey functor. This categorical notion allows us to obtain new Mackey functors by passing to Quillen’s K-theory of the corresponding abelian categories. In the case of an action by monoidal autoequivalences on a monoidal category the Mackey functor obtained at the level of Grothendieck rings has in fact a Green functor structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.