Abstract
The possibility of increasing the performance of thermionic cooling devices by relaxing lateral momentum conservation is examined. Upper limits for the ballistic emission current are established. It is then shown that for most cases, nonconserved lateral momentum model produces a current that exceeds this upper limit. For the case of heterojunctions with a much heavier effective mass in the barrier and with a low barrier height, however, relaxing lateral momentum may increase the current. These results can be simply understood from the general principle that the current is limited by the location, well or barrier, with the smallest number of conducting channels. They also show that within a thermionic emission framework, relaxing lateral momentum conservation does not increase the upper limit performance in most cases, and when it does, the increase is modest. More generally, however, especially when the connection to the carrier reservoir is poor and performance is well below the upper limit, relaxing lateral momentum conservation could prove beneficial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.