Abstract
Our main purpose is to extend several results of interest that have been proved for modules over integral domains to modules over arbitrary commutative rings $R$ with identity. The classical ring of quotients $Q$ of $R$ will play the role of the field of quotients when zero-divisors are present. After discussing torsion-freeness and divisibility (Sections 2–3), we study Matlis-cotorsion modules and their roles in two category equivalences (Sections 4–5). These equivalences are established via the same functors as in the domain case, but instead of injective direct sums $\oplus Q$ one has to take the full subcategory of $Q$-modules into consideration. Finally, we prove results on Matlis rings, i.e. on rings for which $Q$ has projective dimension $1$ (Theorem 6.4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.