Abstract

As a possible model for fluid turbulence, a Reiner–Rivlin-type equation is used to study Poiseuille–Couette flow of a viscous fluid in a rotating cylindrical pipe. The equations of motion are derived in cylindrical coordinates, and small-amplitude perturbations are considered in full generality, involving all three velocity components. A new matrix-based numerical technique is proposed for the linearized problem, from which the stability is determined using a generalized eigenvalue approach. New results are obtained in this cylindrical geometry, which confirm and generalize the predictions of previous recent studies. A possible mechanism for the transition to turbulent flow is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.