Abstract

Sea clutter, the radar backscatter from the ocean surface, has been observed to be highly non-Gaussian. K distribution is among the best distributions proposed to fit non-Gaussian sea clutter data. Using diffusive models, K distributed sea clutter can be casted as a Gaussian speckle, with a de-correlation time of 0.1 s, modulated by a Gamma distribution, with a de-correlation time of about 1 s, characterizing the large scale structures of the sea surface. Our analyses of large amounts of real sea clutter data suggest that between the time scales for the Gaussian speckle and large scale structures on the sea surface to de-correlate, sea clutter can be characterized as multifractal 1/f processes. This is the feature that is not captured by diffusive models and underlies why K distribution cannot fit real sea clutter data sufficiently well. We surmise that by combining K distribution and associated diffusive models with multifractal formalism, the many different physical processes underlying sea clutter can be more comprehensively characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.