Abstract
At present, modeling of the plastic response of porous solids is done using stress-based plastic potentials. To gain understanding of the combined effects of all invariants for general three-dimensional loadings, a strain-rate based approach appears more appropriate. In this paper, for the first time strain rate-based potentials for porous solids with Tresca and von Mises matrices are obtained. The dilatational response is investigated for general 3-D conditions for both compressive and tensile states using rigorous upscaling methods. It is demonstrated that the presence of voids induces dependence on all invariants, the noteworthy result being the key role played by the plastic flow of the matrix on the dilatational response. If the matrix obeys the von Mises criterion, the shape of the cross-sections of the porous solid with the octahedral plane deviates slightly from a circle, and changes very little as the absolute value of the mean strain rate increases. However, if the matrix behavior is described by Tresca's criterion, the shape of the cross-sections evolves from a regular hexagon to a smooth triangle with rounded corners. Furthermore, it is revealed that the couplings between invariants are very specific and depend strongly on the particularities of the plastic flow of the matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.