Abstract
This paper introduces a technique for modeling partly consolidated ice rubble using a two-dimensional combined finite-discrete element method and an application of the technique on ice rubble punch through experiments. In the technique, each ice block within the rubble, the contact forces between the blocks, the block deformation, and the rubble freeze bonds are modelled. Simulations with various freeze bond strengths and block to block friction coefficients were performed. As a main simulation result, the close relationship between rubble deformation patterns and load records is demonstrated in detail. It is shown that the buoyant load component due to the rubble becoming detached from the surrounding rubble field and displaced during an experiment is of crucial importance when interpreting punch through experiment results. The consequences of simulation results on ice rubble material modeling are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.