Abstract

AbstractThis paper studies estimation of stochastic block models with Rissanen’s minimum description length (MDL) principle in the dense graph asymptotics. We focus on the problem of model specification, i.e., identification of the number of blocks. Refinements of the true partition always decrease the code part corresponding to the edge placement, and thus a respective increase of the code part specifying the model should overweight that gain in order to yield a minimum at the true partition. The balance between these effects turns out to be delicate. We show that the MDL principle identifies the true partition among models whose relative block sizes are bounded away from zero. The results are extended to models with Poisson-distributed edge weights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.