Abstract

Simulation of quantum dynamics is a grand challenge of computational physics. In this work we investigate methods for reducing the demands of such simulation by identifying reduced-order models for dynamics generated by parameterized quantum Hamiltonians. In particular, we first formulate an algebraic condition that certifies the existence of invariant subspaces for a model defined by a parameterized Hamiltonian and an initial state. Following this we develop and analyze two methods to explicitly construct a reduced-order model, if one exists. In addition to general results characterizing invariant subspaces of arbitrary finite dimensional Hamiltonians, by exploiting properties of the generalized Pauli group we develop practical tools to speed up simulation of dynamics generated by certain spin Hamiltonians. To illustrate the methods developed we apply them to several paradigmatic spin models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.