Abstract

Laminar three-dimensional flow of nanofluid over a bi-directional stretching sheet is investigated. Convective boundary conditions are used for the analysis of thermal boundary layer. Mathematical model containing the combined effects of Brownian motion and thermophoretic diffusion of nanoparticles is adopted. The formulated differential system is solved numerically using a shooting method with fourth–fifth-order Runge–Kutta integration technique. The solutions depend on various interesting parameters including velocity ratio parameter (λ), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Prandtl number (Pr), Lewis number (Le) and the Biot number (γ). It is noticed that fields are largely influenced with the variations of these parameters. The results are compared with the existing studies for the two-dimensional flows and found in an excellent agreement. The study reveals that nanoparticles in the base fluid offer a potential in improving the convective heat transfer performance of various liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.