Abstract
We prove two results on mod p properties of Siegel modular forms. First, we use theta series in order to construct of a Siegel modular form of weight p−1 which is congruent to 1 mod p. Second, we define a theta operator \(\varTheta\) on q-expansions and show that the algebra of Siegel modular forms mod p is stable under \({\varTheta}\), by exploiting the relation between \({\varTheta}\) and generalized Rankin-Cohen brackets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.