Abstract
Abstract Let A be a unital algebra, δ be a linear mapping from A into itself and m, n be fixed integers. We call δ an (m, n)-derivable mapping at Z, if mδ(AB) + nδ(BA) = mδ(A)B + mAδ(B) + nδ(B)A for all A,B ∈ A with AB = Z. In this paper, (m, n)-derivable mappings at 0 (resp. IA ⊕ 0, I) on generalized matrix algebras are characterized. We also study (m, n)-derivable mappings at 0 on CSL algebras. We reveal the relationship between this kind of mappings with Lie derivations, Jordan derivations and derivations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.