Abstract

A mixed s-stack q-queue layout of a graph consists of a linear order of its vertices and of a partition of its edges into s stacks and q queues, such that no two edges in the same stack cross and no two edges in the same queue nest. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout. Recently, Pupyrev disproved this conjectured by demonstrating a planar partial 3-tree that does not admit a 1-stack 1-queue layout. In this note, we strengthen Pupyrev's result by showing that the conjecture does not hold even for 2-trees, also known as series-parallel graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.