Abstract

In a storyline visualization, we visualize a collection of interacting characters (e.g., in a movie, play, etc.) by $x$-monotone curves that converge for each interaction, and diverge otherwise. Given a storyline with $n$ characters, we show tight lower and upper bounds on the number of crossings required in any storyline visualization for a restricted case. In particular, we show that if (1) each meeting consists of exactly two characters and (2) the meetings can be modeled as a tree, then we can always find a storyline visualization with $O(n\log n)$ crossings. Furthermore, we show that there exist storylines in this restricted case that require $\Omega(n\log n)$ crossings. Lastly, we show that, in the general case, minimizing the number of crossings in a storyline visualization is fixed-parameter tractable, when parameterized on the number of characters $k$. Our algorithm runs in time $O(k!^2k\log k + k!^2m)$, where $m$ is the number of meetings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.