Abstract
Many works related to dually chordal graphs, their cliques and neighborhoods were published by Brandstädt et al. (1998) [1] and Gutierrez (1996) [6]. We will undertake a similar study by considering minimal vertex separators and their properties instead. We find a necessary and sufficient condition for every minimal vertex separator to be contained in the closed neighborhood of a vertex and two major characterizations of dually chordal graphs are proved. The first states that a graph is dually chordal if and only if it possesses a spanning tree such that every minimal vertex separator induces a subtree. The second says that a graph is dually chordal if and only if the family of minimal vertex separators is Helly, its intersection graph is chordal and each of its members induces a connected subgraph. We also found adaptations for them, requiring just O(|E(G)|) minimal vertex separators if they are conveniently chosen. We obtain at the end a proof of a known characterization of the class of hereditary dually chordal graphs that relies on the properties of minimal vertex separators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.