Abstract

By methods from nonequilibrium thermodynamics, we derive a diffuse-interface model for two-phase flow of incompressible fluids with dissolved noninteracting polymers. The polymers are modeled by dumbbells subjected to general elastic spring-force potentials including in particular Hookean and finitely extensible, nonlinear elastic (FENE) potentials. Their density and orientation are described by a Fokker–Planck-type equation which is coupled to a Cahn–Hilliard and a momentum equation for phase-field and gross velocity/pressure. Henry-type energy functionals are used to describe different solubility properties of the polymers in the different phases or at the liquid–liquid interface. Taking advantage of the underlying energetic/entropic structure of the system, we prove existence of a weak solution globally in time for the case of FENE-potentials. As a by-product in the case of Hookean spring potentials, we derive a macroscopic diffuse-interface model for two-phase flow of Oldroyd-B-type liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call