Abstract

This paper revisit and extend the interesting case of bounds on the Q-factor for a given directivity for a small antenna of arbitrary shape. A higher directivity in a small antenna is closely connected with a narrow impedance bandwidth. The relation between bandwidth and a desired directivity is still not fully understood, not even for small antennas. Initial investigations in this direction has related the radius of a circumscribing sphere to the directivity, and bounds on the Q-factor has also been derived for a partial directivity in a given direction. In this paper we derive lower bounds on the Q-factor for a total desired directivity for an arbitrarily shaped antenna in a given direction as a convex problem using semi-definite relaxation techniques (SDR). We also show that the relaxed solution is also a solution of the original problem of determining the lower Q-factor bound for a total desired directivity. SDR can also be used to relax a class of other interesting non-convex constraints in antenna optimization such as tuning, losses, front-to-back ratio. We compare two different new methods to determine the lowest Q-factor for arbitrary shaped antennas for a given total directivity. We also compare our results with full EM-simulations of a parasitic element antenna with high directivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.