Abstract
Abstract A comprehensive account is given of the theory of metanilpotent groups with the minimal condition on normal subgroups. After reviewing classical material, many new results are established relating to the Fitting subgroup, the Hirsch–Plotkin radical, the Frattini subgroup, splitting and conjugacy, the Schur multiplier, Sylow structure and the maximal subgroups. Module theoretic and homological methods are used throughout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.