Abstract

Abstract The terms of the steady-state, homogeneous turbulent kinetic energy budgets are obtained from measurements of turbulence and fine structure from the small autonomous underwater vehicle (AUV) Remote Environmental Measuring Units (REMUS). The transverse component of Reynolds stress and the vertical flux of heat are obtained from the correlation of vertical and transverse horizontal velocity, and the correlation of vertical velocity and temperature fluctuations, respectively. The data were obtained using a turbulence package, with two shear probes, a fast-response thermistor, and three accelerometers. To obtain the vector horizontal Reynolds stress, a generalized eddy viscosity formulation is invoked. This allows the downstream component of the Reynolds stress to be related to the transverse component by the direction of the finescale vector vertical shear. The Reynolds stress and the vector vertical shear then allow an estimate of the rate of production of turbulent kinetic energy (TKE). Heat flux is obtained by correlating the vertical velocity with temperature fluctuations obtained from the FP-07 thermistor. The buoyancy flux term is estimated from the vertical flux of heat with the assumption of a constant temperature–salinity (T–S) relationship. Turbulent dissipation is obtained directly from the usage of shear probes. A multivariate correction procedure is developed to remove vehicle motion and vibration contamination from the estimates of the TKE terms. A technique is also developed to estimate the statistical uncertainty of using this estimation technique for the TKE budget terms. Within the statistical uncertainty of the estimates herein, the TKE budget on average closes for measurements taken in the weakly stratified waters at the entrance to Long Island Sound. In the strongly stratified waters of Narragansett Bay, the TKE budget closes when the buoyancy Reynolds number exceeds 20, an indicator and threshold for the initiation of turbulence in stratified conditions. A discussion is made regarding the role of the turbulent kinetic energy length scale relative to the length of the AUV in obtaining these estimates, and in the TKE budget closure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.