Abstract
The pulmonary nodule is the most common manifestation of lung cancer, the most deadly of all cancers. Most small pulmonary nodules are benign, however, and currently the growth rate of the nodule provides for one of the most accurate noninvasive methods of determining malignancy. In this paper, we present methods for measuring the change in nodule size from two computed tomography image scans recorded at different times; from this size change the growth rate may be established. The impact of partial voxels for small nodules is evaluated and isotropic resampling is shown to improve measurement accuracy. Methods for nodule location and sizing, pleural segmentation, adaptive thresholding, image registration, and knowledge-based shape matching are presented. The latter three techniques provide for a significant improvement in volume change measurement accuracy by considering both image scans simultaneously. Improvements in segmentation are evaluated by measuring volume changes in benign or slow growing nodules. In the analysis of 50 nodules, the variance in percent volume change was reduced from 11.54% to 9.35% (p = 0.03) through the use of registration, adaptive thresholding, and knowledge-based shape matching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.