Abstract

AbstractIn most multi‐phase flow problems, the particulate phase is exposed to an external field which causes dispersion. Therefore, local velocity measurements of the disperse phase are no longer equivalent with respect to averaging in time and averaging in volume. While the local time‐averaged velocity still characterizes the transport of the ensemble in the Eulerian sense, one has to be be careful in modeling this velocity average by considering the ensemble's composition. It is shown for different particle ensembles that the conventional particle velocity average M1,0 calculated with respect to the dispersion relationship and a particle size number density distribution is far below the measured ensemble average; the deviation depends on the width of the particle size distribution. It is deduced that Eulerian particle velocity values referring to a certain time interval can be modeled by a ratio of velocity moments M2,0/M1,0 calculated with particle size number distributions referring to a certain probe volume. This relationship was confirmed by measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.