Abstract

We analyze the mean-square (MS) stability properties of a newly introduced adaptive time-stepping stochastic Runge–Kutta method which relies on two local error estimators based on drift and diffusion terms of the equation [A. Foroush Bastani, S.M. Hosseini, A new adaptive Runge–Kutta method for stochastic differential equations, J. Comput. Appl. Math. 206 (2007) 631–644]. In the same spirit as [H. Lamba, T. Seaman, Mean-square stability properties of an adaptive time-stepping SDE solver, J. Comput. Appl. Math. 194 (2006) 245–254] and with applying our adaptive scheme to a standard linear multiplicative noise test problem, we show that the MS stability region of the adaptive method strictly contains that of the underlying stochastic differential equation. Some numerical experiments confirms the validity of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.