Abstract
Abstract In this paper, we consider generalized Möbius functions associated with two types of L-functions: Rankin–Selberg L-functions of symmetric powers of distinct holomorphic cusp forms and L-functions derived from Maass cusp forms. We show that these generalized Möbius functions are weakly orthogonal to bounded sequences. As a direct corollary, a generalized Sarnak’s conjecture holds for these two types of Möbius functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.