Abstract

We introduce a new class of problems concerned with the computation of maximum flows through two-dimensional polyhedral domains. Given a polyhedral space (e.g., a simple polygon with holes), we want to find the maximum “flow” from a source edge to a sink edge. Flow is defined to be a divergence-free vector field on the interior of the domain, and capacity constraints are specified by giving the maximum magnitude of the flow vector at any point. Strang proved that max flow equals min cut; we address the problem of constructing min cuts and max flows. We give polynomial-time algorithms for maximum flow from a source edge to a sink edge through a simple polygon with uniform capacity constraint (with or without holes), maximum flow through a simple polygon from many sources to many sinks, and maximum flow through weighted polygonal regions. Central to our methodology is the intimate connection between the max-flow problem and its dual, the min-cut problem. We show how the continuous Dijkstra paradigm of solving shortest paths problems corresponds to a continuous version of Berge's algorithm for computation of maximum flow in a planar network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.