Abstract

A triangle-free graph is maximal if adding any edge will create a triangle. The minimal number of edges of a maximal triangle-free graph on n vertices having maximal degree at most D is denoted by F(n, D). We determine the value of limn-∞ F(n, cn)/n for 2/5 < c < 1/2. This investigation continues work done by Z. Füredi and Á. Seress. Our result is contrary to a conjecture of theirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.