Abstract
It is well-known that if R is a left Noetherian ring, then there is a bijective correspondence between minimal prime ideals of R and maximal torsion radicals of R-Mod. Using the notion of a prime M-ideal, it is shown that this correspondence can be extended to the category σ[M] of modules subgenerated by a module M, provided that M is a Noetherian quasi-projective generator in σ[M]. Furthermore, under this hypothesis the prime M-ideals are the fully invariant submodules P of M such that M/P is semi-compressible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.