Abstract

Max-min fair is widely used in network traffic engineering to allocate available resources among different traffic transfers. Recently, as data replication technique developed, increasing systems enforce multi-source transmission to maximize network utilization. However, existing TE approaches fail to deal with multi-source transfers because the optimization becomes a joint problem of bandwidth allocation as well as flow assignment among different sources. In this paper, we present a novel allocation approach for multi-source transfers to achieve global max-min fairness. The joint bandwidth allocation and flow assignment optimization problem poses a major challenge due to nonlinearity and multiple objectives. We cope with this by deriving a novel transformation with simple equivalent canonical linear programming to achieve global optimality efficiently. We conduct data-driven simulations, showing that our approach is more max-min fair than other single-source and multi-source allocation approaches, meanwhile it outperforms others with substantial gains in terms of network throughput and transfer completion time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call