Abstract

Representations of geometric (Clifford) algebras with real square matrices are reviewed by providing the general theorem as well as examples of lowest dimensions. New definitions for isometry and norm are proposed. Direct and indirect isometries are identified respectively with automorphisms and antiautomorphisms of the geometric algebra, while the norm of every element is defined as the $n^\textit{th}$-root of the absolute value of the determinant of its matrix representation of order $n$. It is deduced in which geometric algebras direct isometries are inner automorphisms (similarity transformations of matrices). Indirect isometries need reversion too. Finally, the most common isometries are reviewed in order to write them in this way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.