Abstract
In this paper we introduce a new matrix nearness problem that is intended to generalize the distance to instability. Due to its applicability in analyzing the robustness of eigenvalues with respect to the arbitrary localization sets (domains) in the complex plane, we call it the distance to delocalization. For the open left half-plane or the unit disk, the distance to the nearest unstable matrix is obtained as a special case. Following the theoretical framework of Hermitian functions and the Lyapunov-type localization approach, we present new Newton-type algorithms for the distance to delocalization: first using an explicit computation of the desired singular values (eD2D), and then using an implicit computation (iD2D). For both algorithms, we introduce a special stabilization technique of the Newton steps and, for a certain class of the localization domains, we provide an additional globality test. Since our investigations are motivated by several practical applications, we illustrate our approach on som...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.