Abstract
Constrained KP and super-KP hierarchies of integrable equations (generalized NLS hierarchies) are systematically produced through a Lie-algebraic AKS matrix framework associated with the homogeneous grading. The role played by different regular elements in defining the corresponding hierarchies is analyzed, as well as the symmetry properties under the Weyl group transformations. The coset structure of higher order Hamiltonian densities is proven. For a generic Lie algebra the hierarchies considered here are integrable and essentially dependent on continuous free parameters. The bosonic hierarchies studied in Refs. 1 and 2 are obtained as special limit restrictions on Hermitian symmetric spaces. In the supersymmetric case the homogeneous grading is introduced consistently by using alternating sums of bosons and fermions in the spectral parameter power series. The bosonic hierarchies obtained from [Formula: see text] and the supersymmetric ones derived from the N=1 affinization of sl (2), sl (3) and osp (1|2) are explicitly constructed. An unexpected result is found: only a restricted subclass of the sl (3) bosonic hierarchies can be supersymmetrically extended while preserving integrability.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.