Abstract
We investigate the sub-leading contributions to the free energy of Bethe Ansatz solvable (continuum) models with different boundary conditions. We show that the Thermodynamic Bethe Ansatz approach is capable of providing the O(1) pieces if both the density of states in rapidity space and the quadratic fluctuations around the saddle point solution to the TBA are properly taken into account. In relativistic boundary QFT the O(1) contributions are directly related to the exact g-function. In this paper we provide an all-orders proof of the previous results of P. Dorey et al. on the g-function in both massive and massless models. In addition, we derive a new result for the g-function which applies to massless theories with arbitrary diagonal scattering in the bulk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.