Abstract
With the advancements in technology, smartphones’ capabilities have increased immensely. For instance, the smartphone cameras are being used for face and ocular biometric-based authentication. This research proposes finger-selfie based authentication mechanism, which uses a smartphone camera to acquire a selfie of a finger. In addition to personal device-level authentication, finger-selfies may also be matched with livescan fingerprints present in the legacy/national ID databases for remote or touchless authentication. We propose an algorithm which comprises segmentation, enhancement, Deep Scattering Network based feature extraction, and Random Decision Forest to authenticate finger-selfies. This paper also presents one of the largest finger-selfie database with over 19, 400 images. The images in the IIIT-D Smartphone Finger-selfie Database v2 are captured using multiple smartphones and include variations due to background, illumination, resolution, and sensors. Results and comparison with existing algorithms show the efficacy of the proposed algorithm which yields equal error rates in the range of 2.1 – 5.2% for different experimental protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biometrics, Behavior, and Identity Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.