Abstract

Applications of the generalization of Mazur-Orlicz theorem to concrete spaces are proved. Suitable moment problems are solved, as applications of extension theorems of linear operators with a convex and a concave constraint. In particular, a relationship between Mazur-Orlicz theorem and Markov moment problem is partially illustrated. In the end of this work, an application to the multidimensional Markov moment problem of an earlier extension result on a distanced subspace with respect to a bounded convex set is proved. Contrary to preceding results based on this theorem, now the solution is defined on a space of continuous functions vanishing at the origin. Most of the solutions are operator valued, respectively function valued.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.