Abstract

We use level truncated superstring field theory to obtain the effective potential for the Wilson line marginal deformation parameter which corresponds to the constant vacuum expectation value of the U(1) gauge field on the D-brane in a particular direction. We present results for both the BPS and the non-BPS D-brane. In the case of non-BPS D-brane the effective potential has branches corresponding to the extrema of the tachyon potential. In the branch with vanishing tachyon vev (M-branch), the effective potential becomes flatter as the level of the approximation is increased. The branch which corresponds to the stable vacuum after the tachyon has condensed (V-branch) exists only for a finite range of values of marginal deformation parameter. We use our results to find the mass of the gauge field in the stable tachyonic vacuum. We find this mass to be of a non-zero value which seems to stabilize as the level approximation is improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.