Abstract
The main objective of this paper is the calculation and the comparative study of two general measures of multivariate kurtosis, namely Mardia's measure β 2 , p and Song's measure S ( f ) . In this context, general formulas for the said measures are derived for the broad family of the elliptically contoured symmetric distributions and also for specific members of this family, like the multivariate t -distribution, the multivariate Pearson type II, the multivariate Pearson type VII, the multivariate symmetric Kotz type distribution and the uniform distribution in the unit sphere. Analytic expressions for computing Shannon and Rényi entropies are obtained under the elliptic family. The behaviour of Mardia's and Song's measures, their similarities and differences, possible interpretations and uses in practice are investigated by comparing them in specific members of the elliptic family of multivariate distributions. An empirical estimator of Song's measure is moreover proposed and its asymptotic distribution is investigated under the elliptic family of multivariate distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.