Abstract
We call a function $f\colon X\to Y\,$ P-preserving if, for every subspace $A \subset X$ with property P, its image $f(A)$ also has property P. Of course, all continuous maps are both compactness- and connectedness-preserving and the natural question about when the converse of this holds, i.e. under what conditions such a map is continuous, has a long history. Our main result is that any nontrivial product function, i.e. one having at least two nonconstant factors, that has connected domain, $T_1$ range, and is connectedness-preserving must actually be continuous. The analogous statement badly fails if we replace in it the occurrences of "connected" by "compact". We also present, however, several interesting results and examples concerning maps that are compactness-preserving and/or continuum-preserving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Commentationes Mathematicae Universitatis Carolinae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.